mask_impulse_noise#
- echopype.clean.mask_impulse_noise(ds_Sv: Dataset, depth_bin: str = '5m', num_side_pings: int = 2, impulse_noise_threshold: str = '10.0dB', range_var: str = 'depth', use_index_binning: bool = False) DataArray #
Locate and create a mask for impulse noise using a ping-wise two-sided comparison.
- Parameters
- ds_Svxarray.Dataset
Calibrated Sv data with depth data variable.
- depth_binstr, default “5m”
Donwsampling bin size along vertical range variable (range_var) in meters.
- num_side_pingsint, default 2
Number of side pings to look at for the two-side comparison.
- impulse_noise_thresholdstr, default “10.0dB”
Impulse noise threshold value (dB) for the two-side comparison.
- range_varstr, default “depth”
Vertical Axis Range Variable. Can be either “depth” or “echo_range”.
- use_index_binningbool, default False
Speeds up aggregations by assuming depth is uniform and binning based on range_sample indices instead of depth values.
- Returns
- xr.Dataset
Xarray boolean array impulse noise mask.
References
This function’s implementation is based on the following text reference:
Ryan et al. (2015) Reducing bias due to noise and attenuation in open-ocean echo integration data, ICES Journal of Marine Science, 72: 2482–2493.
Additionally, code was derived from echopy’s numpy single-channel implementation of impulse noise masking and translated into xarray code: open-ocean-sounding/echopy # noqa